Turbo charge your R code with RCPP

So, you’ve written code in R which contains somewhat complicated loops. The execution time is not quite as fast as you hoped for. You turn to using the profvis package in RStudio (or Rprof) to profile the R program, in the hopes of finding the places in your code that are causing the bottleneck.  The profiler returns a few areas that you focus on to make more efficient, but unfortunately no matter how many ‘loops’ you jump through, you can’t seem to reduce the execution time.

Next, you spend at least a couple of frustrating hours trying to figure out how to vectorize (think: higher-level programming to improve efficiency) the loops creating the bottleneck, to no avail. And it’s okay to admit it, we’ve all been there.

STOP!!!! The solution may be to rewrite some of your key functions in C++.Read More »

How to quantify Model Risk from Parameter Uncertainty

For a quantitative analyst whose models are frequently scrutinized by Federal Reserve Bank examiners, the ability to quantify model risk is an important part of the model documentation process. Model risk is typically described as “. . . the potential for adverse consequences from decisions based on incorrect or misused model outputs and reports.”

Model Risk quantification can be a tricky concept to grasp.  But when we consider that models are nothing more than abstractions of real life situations, it’s easier to see how there are risks associated with models. Even when models perform exceptionally well in recreating said real life scenario.Read More »